Bypassing the Pentose Phosphate Pathway: Towards Modular Utilization of Xylose

نویسندگان

  • Kulika Chomvong
  • Stefan Bauer
  • Daniel I. Benjamin
  • Xin Li
  • Daniel K. Nomura
  • Jamie H. D. Cate
چکیده

The efficient use of hemicellulose in the plant cell wall is critical for the economic conversion of plant biomass to renewable fuels and chemicals. Previously, the yeast Saccharomyces cerevisiae has been engineered to convert the hemicellulose-derived pentose sugars xylose and arabinose to d-xylulose-5-phosphate for conversion via the pentose phosphate pathway (PPP). However, efficient pentose utilization requires PPP optimization and may interfere with its roles in NADPH and pentose production. Here, we developed an alternative xylose utilization pathway that largely bypasses the PPP. In the new pathway, d-xylulose is converted to d-xylulose-1-phosphate, a novel metabolite to S. cerevisiae, which is then cleaved to glycolaldehyde and dihydroxyacetone phosphate. This synthetic pathway served as a platform for the biosynthesis of ethanol and ethylene glycol. The use of d-xylulose-1-phosphate as an entry point for xylose metabolism opens the way for optimizing chemical conversion of pentose sugars in S. cerevisiae in a modular fashion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchy in pentose sugar metabolism in Clostridium acetobutylicum.

Bacterial metabolism of polysaccharides from plant detritus into acids and solvents is an essential component of the terrestrial carbon cycle. Understanding the underlying metabolic pathways can also contribute to improved production of biofuels. Using a metabolomics approach involving liquid chromatography-mass spectrometry, we investigated the metabolism of mixtures of the cellulosic hexose s...

متن کامل

Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway

BACKGROUND Sustainable and economically viable manufacturing of bioethanol from lignocellulose raw material is dependent on the availability of a robust ethanol producing microorganism, able to ferment all sugars present in the feedstock, including the pentose sugars L-arabinose and D-xylose. Saccharomyces cerevisiae is a robust ethanol producer, but needs to be engineered to achieve pentose su...

متن کامل

Heterologous xylose isomerase pathway and evolutionary engineering improve xylose utilization in Saccharomyces cerevisiae

Xylose utilization is one key issue for the bioconversion of lignocelluloses. It is a promising approach to engineering heterologous pathway for xylose utilization in Saccharomyces cerevisiae. Here, we constructed a xylose-fermenting yeast SyBE001 through combinatorial fine-tuning the expression of XylA and endogenous XKS1. Additional overexpression of genes RKI1, RPE1, TKL1, and TAL1 in the no...

متن کامل

Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae

BACKGROUND Fermentation of xylose to ethanol has been achieved in S. cerevisiae by genetic engineering. Xylose utilization is however slow compared to glucose, and during anaerobic conditions addition of glucose has been necessary for cellular growth. In the current study, the xylose-utilizing strain TMB 3415 was employed to investigate differences between anaerobic utilization of glucose and x...

متن کامل

Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae.

Fermentation of xylose, a major constituent of lignocellulose, will be important for expanding sustainable biofuel production. We sought to better understand the effects of intrinsic (genotypic) and extrinsic (growth conditions) variables on optimal gene expression of the Scheffersomyces stipitis xylose utilization pathway in Saccharomyces cerevisiae by using a set of five promoters to simultan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016